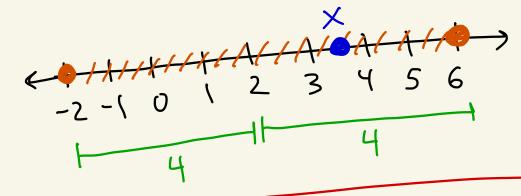
Math 4650 Homework 1 Solutions

(a)
$$1x-11<2$$

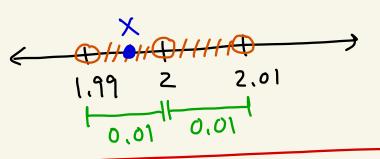
 $-2< x-1<2$
 $-1< x<3$

(b) $1-2+x \le 4$ $1x-21 \le 4$ $-4 \le x-2 \le 4$ $-2 \le x \le 6$



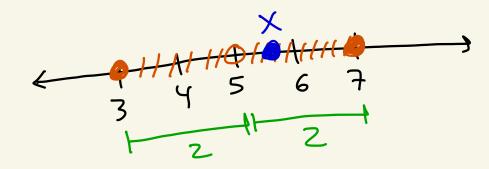
(c) 0 < (x-2) < 0.01 and x+3

$$-0.01 < x - 2 < 0.01$$
 and $x \ne 2$
 $1.99 < x < 2.01$ and $x \ne 2$



(d) 0<(x-5) < 2

$$-2 \le X - 5 \le 2$$
 and $X \ne 5$
 $3 \le X \le 7$ and $X \ne 5$



(a)
$$X = \{5 + \frac{1}{n} \mid n \in IN \} = \{5 + 1, 5 + \frac{1}{2}, 5 + \frac{1}{3}, 5 + \frac{1}{4}, \dots \}$$

$$cob(x) = 0$$

$$ivt(x) = 2$$

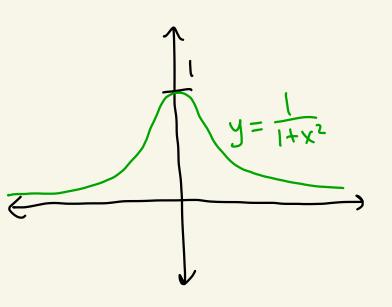
(b)
$$X = \{ 1 + \frac{(-1)^n}{n} | n \in IN \}$$

= $\{ 1 - \frac{1}{n}, 1 + \frac{1}{2}, 1 - \frac{1}{3}, 1 + \frac{1}{4}, 1 - \frac{1}{5}, \dots \}$

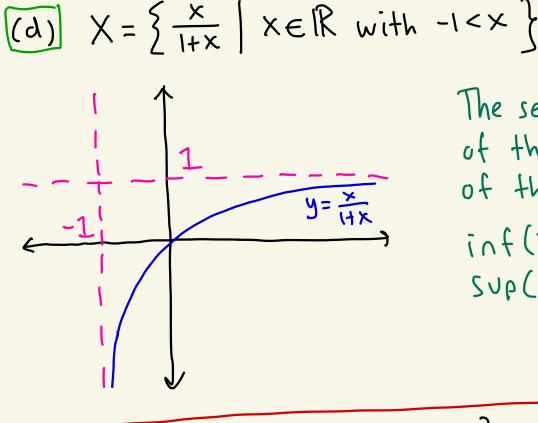
$$\frac{1-1}{0} \xrightarrow{1-\frac{1}{5}} \xrightarrow{1+\frac{1}{4}} \frac{1+\frac{1}{2}}{2} = 1.5$$

$$sup(x) = 0$$

$$(c) X = \{ \frac{1}{1+x^2} | x \in \mathbb{R} \}$$



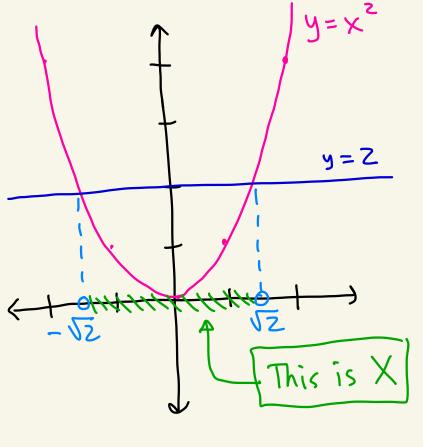
The set X consists of the y-values of this graph. inf(x) = 0sup(X)=1



The set X consists
of the y-values
of this graph with -1<X
inf(X) does not exist
sup(X) = 1

(e)
$$X = \{x \in |R| | x^2 + 1 < 3\}$$

= $\{x \in |R| | x^2 < 2\}$



We see from the picture that

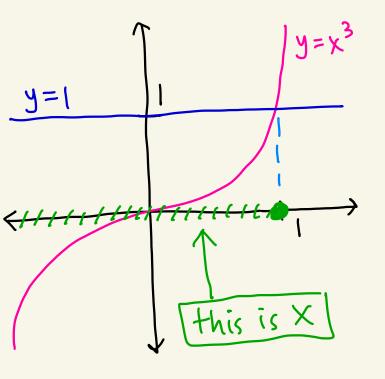
$$X = \{x \in \mathbb{R} | -\sqrt{2} < x < \sqrt{2} \}$$

= $(-\sqrt{2}, \sqrt{2})$

$$i_{x}f(x) = -\sqrt{z}$$

$$sup(x) = \sqrt{z}$$

$$(f) X = \{ x \in |\mathcal{R} \mid x^3 \leq 1 \}$$



From the picture we see that
$$X = \{x \in |R| \mid x \leq 1\}$$

$$= (-\infty, 1]$$

$$inf(x)$$
 does not exist
 $sup(x) = 1$

3 Let xelk with x>0. Our assumption is that XEE for all E>0. Let's show this implies that X=0. Suppose X>0. Then, O< \(\frac{2}{2} < \chi. Set E= > By assumption x < E. But then both E<X and X ≤ E

which is a contradiction.

Hence X70 cannot be tive.

$$S_0, X = 0.$$

Suppose that a and b are both supremums for S.

Then a and b are both upper bounds for S.

Since a is a supremum for S and b is an upper bound for S, by def of supremum, we have that $a \le b$.

a is a <u>least</u> upper bound for S

Since b is a supremum for S and a is an upper bound for S, by def of supremum we have that b \le a. bisa least upper bound for S

Since $a \le b$ and $b \le a$ We have that a = b.

We are given that b is an upper bound for S and that $b \in S$. Let's show that $b = \sup(S)$.

(i) We already have that b is an upper bound for 5.

(ii) Let's show that b is the least upper bound for S.

Let c be another upper bound for S.

Then, $X \leq C$ for all $X \in S$.

Since bes this gives bec. Thus, bir the least upper bound for S.

By (i) and (iii), b=sup(5).

6		a	.)
Su	p	þ) (

se A and B are non-empty subsets of IR bounded from above and below.

Further assume that A=B.

Let $S_A = Sup(A)$ and $S_B = Sup(B)$.

Since SB is an upper bound for B We know that $b \leq S_B$ for all $b \in B$.

This implies, because $A \subseteq B$, that a < SB for all a ∈ A.

Thus, SB is an upper bound for A.

Since SA is the least upper bound for A we know that $S_A \leq S_B$.

Thus, sup (A) < sup (B).

A similar argument shows inf (B) < int(A). You try.

Also, if a EA, by def. We have inf(A) \le a \le Sup(A).

Hence, inf(B) < inf(A) < sup(A) < sup(B)

Set
$$A = (-2,-1) \cup (2,3)$$

 $B = (-2,3)$

Here
$$inf(A) = -2 = inf(B)$$
 and $sup(A) = 3 = sup(B)$

but A & B

(7)(a) (We give two different proofs)

PROOF #1 - USING DEF OF SUPREMUM

<u>Proof:</u> We are given that $S_A = Sup(A)$ and $S_B = sup(B)$ exist. We are also given that $ANB \neq \phi$.

Since $ANB \subseteq A$ and $S_A = Sup(A)$ we know that $X \le S_A$ for all $X \in ANB$ Since $ANB \subseteq B$ and $S_B = Sup(B)$ we know that $X \le S_B$ for all $X \in ANB$.

Thus, SA and SB are upper bounds for ANB.
Thus, AnB is burnded from above and
sup(ANB) exists.

Let m=min { SA, SB}.

Then from above m is an upper bound for ANB.

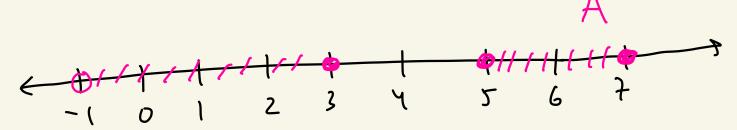
By the def of supremum (least upper bound) We Know that sup(ANB) < M.

Thus, sup(ANB) < min { sup(A), sup(B)}

PROOF #2 - USING THE INF/SUP THEOREM Proof: Let s_= sup(A). Since ANB = A we know that X = SA for all XEANB. So, ANB is bounded from above by SA. Thus, s=sup(AnB) exists. Let's show that s < SA. Suppose that 57 SA. Then, $\xi = S - S_A > 0$. By the int/sup theorem Since S = SUP (ANB), there exists LEANB with SA< l \le S. But then leA and sA<1 which contradicts the fact that SA = SUP(A). Therefore, SESA. Similarly one can show that s < SB. Thus, s < min { SA, SB} So, Sup(ANB) < min & sup(B)}.

Let
$$A = (-1,3] \cup [5,7]$$

 $B = (-1,4)$



Then,
$$ANB = (-1,3)$$

And
$$sup(A) = 7$$

 $sup(B) = 4$
 $min \{ sup(A), sup(B) \} = 4$
 $sup(AnB) = 3$

(7)(c)) (We give two different proofs)

PROOF #1 - USING DEF OF SUPREMUM)

Proof:

Let SA=SUP(A) and SB=SUP(B).

We will assume that $S_A \leq S_B$.

Since SAESB we have that

SB = Max { sup(A), sup(B) }

If SB & SA, the same proof would work with A and B interchanged

We first show that Sp is an upper bound for AUB. Then XEA or XEB. (since SA=SUP(A))

If xeA, then x ≤ SA ≤ SB.

If x ∈ B, then x ≤ SB (since SB=SUP(B))

Thus, no matter the case we have x ≤ Sg. So, SB is an upper bound for AUB.

We will show that SB is the least upper bound for AUB.

Suppose c is another upper bound for AUB.

Then x < c for all x ∈ AUB.

Thus, $x \le c$ for all $x \in B$.

So, c is an upper bound for B.

Since s_B is the least upper bound for Bwe get that $s_B \le c$.

Thus, s_B is the least upper bound for AUB.

That is, $s_B = \sup(A \cup B)$.

So, $\sup(A \cup B) = \max\{s_{UP}(A), \sup(B)\}$

PROOF #2 - USING THE INF/SUP THEOREM

Proof:

Let $S_A = \sup(A)$ and $S_B = \sup(B)$. We will assume that $S_A \leq S_B$. Since $S_A \leq S_B$ we have that $S_B = \max\{S_B \mid S_B \mid S_$ If SB & SA, the Same proof would work with A and B interchanged We first show that SB is an upper bound for AUB. Then XEA or XEB. (since SA=SUP(A)) If xEA, then X ≤ SA ≤ SB. If x ∈ B, then x ≤ SB (since SB=SUP(B)) Thus, no matter the case we have x ≤ SB. So, SB is an upper bound for AUB. Now we show that SB is the least upper bound for AUB. Suppose that c is another upper bound for AUB. We need to show that $S_B \leq C$. Suppose that SB>C. Then $\xi = S_B - C > 0$. By the inf/sup theorem, since SB=SUP(B), there exists LEB with c<less Then LEAUB and c<1. This contradicts the fact that c is

Thus, $S_B > C$ can't be true. So, $S_B \le C$. Thus, $S_B = C$. Thus, $S_B = S_B =$

SB

We break the proof into two cases.

cusel: Suppose a < b.

Then, a-b < 0.

Then,
$$a-b \ge 0$$
.
So, $|a-b| = -(a-b) = b-a$

Also, b-a 70.

So,
$$|b-\alpha|=b-\alpha$$

Thus, |a-b|=|b-al.

Use:
$$\begin{cases} x & \text{if } x \ge 0 \\ 1x & \text{if } x < 0 \end{cases}$$

case 2: suppose a>b

Then, a-670.

So,
$$|a-b|=a-b$$

Also, b-a<0.

Also,
$$b-a \ge 0$$
.
So, $|b-a| = -(b-a) = a-b$

Thus, |a-b|= |b-a1.

In both cases la-bl=|b-al.

 $|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{ot } x > 0 \end{cases}$ 8(b) We break the proof into four cases and use: Case 1: Suppose azo and 620 Then, ab > 0. So, [ab] = ab, |a| = a, and |b| = b. Thus, |ab| = ab = |a|. |b| Case 2: Suppose a 20 and b < 0 So, lab = -ab, lal = a, and |b| = -b. Then, ab < D Thus, lab = -ab = a(-b) = lal· 161 case 3: Suppose a<0 and 670 So, lab = -ab, lal = -a, and |b| = b. Then, ab < 0 Thus, lab = -ab = (-a) b = lal. 16) Case 4: Suppose a < D and b < D Then, ab > 0. So, [ab]=ab, |a|=-a, and |b|=-b. Thus, labl=ab=(-a)(-b) = lal.161 In all four cases we get lab = lal. |bl.

(8)(c) Use (Use) Using part (b) we get that $|x| = \frac{1}{-x}$ if x < 0 $\left|\frac{2}{b}\right| = \left|\alpha \cdot \frac{1}{b}\right| = \left|\alpha| \cdot \left|\frac{1}{b}\right| (*)$ If b>0, then b>0 and | == If b<0, then b<0 and 1==-(t)=-t== Thus, in either case | = = = = Hence, \a|=|a|.|\b|=|a|.\b|=\\\ |b|=\\\ |b|.

(8)(e)

Note that
$$|\alpha| = |(a-b)+b| \leq |a-b|+|b|$$
So,
$$|\alpha| - |b| \leq |a-b| \text{ (*)} \qquad \text{triangle inequality}$$

Also,
$$|b| = |(b-a)+a| \leq |b-a|+|a|$$
So,
$$-|b-a| \leq |a|-|b|$$
From part (a) of this problem, $|a-b|=|b-a|$.

Thus, $-|a-b|=-|b-a| \leq |a|-|b| \text{ (**)}$

Hence, from (*) and (**) we get that
$$-|a-b| \leq |a|-|b| \leq |a-b|$$

Thus,
$$|a|-|b| \leq |a-b| \text{ Here we use this fact from class:} \text{ I} \text$$